

冷却微纳机械振子至其量子基态

夏可宇 & Jörg Evers

Max Planck Institute for Nuclear Physics

德国 海德堡

引言 纳米机械振子 (NMRs) 冷却 基态冷却 电磁感应透明(EIT) 冷却 集体效应辅助 (CA) 冷却 超导量子比特 (SQ) 纠缠 弱耦合 强耦合

总结

纳米机械振子冷却

引言

P. Del'Haye, ..., T. J.
Kippenberg, Nature 450, 1214 (2007).
H. G. Craighead et al., Science 290, 1532 (2000)
T. Rocheleau et al., Nature 463, 72 (2010);

目标:冷却机械振子到量子基态 动机:

- 宏观领域检验量子力学(纠缠,非经 典态)
- 量子信息处理 (量子计算,量子存储)
- · 量子极限测量(位移,质量,力,...)

÷

纳米机械振子冷却

边带冷却

引言

纳米机械振子冷却

其它方法和理论:

引言

▶反馈冷却
▶周期性冷却
▶机械振子冷却量子理论
边带冷却限制:

▶ 未知限制 $(n_f \approx 4)$

(T. Rocheleau et al., Nature 463, 72 (2010))

> 要求边带可分离

> 对相位噪声敏感

▶ 稳态声子数包含相干成份 (I. Wilson-Rae, ..., T. J. Kippenberg, Phys. Rev. Lett., **99**, 093901 (2007))

引言

纳米机械振子 (NMRs) 冷却 基态冷却 电磁感应透明 (EIT) 冷却 集体效应辅助 (CA) 冷却 超导量子比特 (SQ) 纠缠 弱耦合 强耦合

总结

基态冷却 EIT 冷却

原子/离子系统

Giovanna Morigi, Jürgen Eschner, & Christoph H. Keitel Phys. Rev. Lett., **85**, 4485 (2000)

Absorption

EIT 冷却

系统

J. Clarke & F. K. Wilhelm, Nature **453**, 1031 (2008).

K. Xia, J. Evers Phys. Rev. Lett. **103**, 227203 (2009)

EIT 冷却

量子比特三能级 Λ型模型

e>

 $\Delta_{\rm e}$

 Γ_{ϕ}

 $\Omega_{\rm e}$

EIT 冷却

冷却极限:

EIT 冷却 弱冷却场情形: $r = \Omega_e / \Omega_g \gg 1$ $N_f^{EIT}(r \gg 1) \approx \frac{\gamma r^2 N_i}{4\eta^2 Q_m |\Delta|} + \left(\frac{\gamma}{4\Delta}\right)^2$

强冷却场情形: $r = \Omega_e / \Omega_g \approx 1$ $N_f^{EIT}(r \approx 1) \approx \frac{\gamma N_i}{\eta^2 Q_m |\Delta|} + \left(\frac{\gamma}{4\Delta}\right)^2$

- 环境贡献小
- 散射小
- 无相干成份

边带冷却

$$N_f^{BA} \approx \frac{N_i}{\eta_{LD}^2 Q_m \frac{\gamma}{\nu}} + \left(\frac{\gamma}{4\nu}\right)^2 + \eta^2 \left(\frac{\gamma}{4\nu}\right)^2 n_{max}^2$$

$$\eta_{LD} = \eta \sqrt{n_{max}}$$
$$\eta = \frac{x_{zp}}{\nu} \frac{\partial \omega_c}{\partial x}, n_{max} = \frac{P_{in}}{\hbar \omega_c \kappa}$$

(I. Wilson-Rae, ...,

T. J. Kippenberg, Phys. Rev. Lett., **99**, 093901 (2007))

冷却极限:红色 环境贡献:蓝色 散射: 绿色 相干成份:紫色

基态冷却

EIT 冷却

(I) 理论
(ii) 无衰减和纯消相干
(iii) 有衰减但无纯消相干
Γ = 0.02γ
(iv) 小纯消相干

$$\Gamma = 0.02\gamma, \Gamma_{\phi} = \Gamma$$

 $\Gamma=0.02\gamma, \Gamma_{\phi}=2\Gamma$

 $N_i = 16, \nu = 0.25\gamma, Q = 5 \times 10^4, \eta_{LD} = 0.0566$

引言 纳米机械振子 (NMRs) 冷却 基态冷却 电磁感应透明(EIT) 冷却 集体效应辅助 (CA) 冷却 超导量子比特 (SQ) 纠缠 弱耦合 强耦合

总结

E. Il'ichev, S. H. W. van der Ploeg, M. Grajcar, H. -G. Meyer, Quantum Inf Process **8**, 133 (2009).

K. Xia and J. Evers, arXiv:0912.1990

ω₀-νω₀ 忽略偶极偶极频率漂移

|e>

|g>

|n+1>

|a>

|s>

冷却极限:

边带冷却

冷却极限:红色 环境贡献:蓝色 散射: 绿色 相干成份:紫色

$$N_f^{BA} \approx \frac{N_i}{\eta_{LD}^2 Q_m \frac{\gamma}{\nu}} + \left(\frac{\gamma}{4\nu}\right)^2 + \eta^2 \left(\frac{\gamma}{4\nu}\right)^2 n_{max}^2$$

(I. Wilson-Rae, ...,

T. J. Kippenberg, Phys. Rev. Lett., **99**, 093901 (2007))

稳态声子数 = 环境贡献 + 散射 (i) 无纯消相干

(ii) 有消相干

$$\Gamma_{\phi} = 0, \Omega = 4\gamma, C = 0.14$$

$$\Gamma_{\phi} = 0.5\gamma, \Omega = 10\gamma, C = 0.3$$

10

理论

引言 纳米机械振子 (NMRs) 冷却 基态冷却 电磁感应透明(EIT) 冷却 集体效应辅助 (CA) 冷却 超导量子比特 (SQ) 纠缠 弱耦合 强耦合

总结

系统与模型

纠缠

E. Il'ichev, S. H. W. van der Ploeg, M. Grajcar, H. -G. Meyer, Quantum Inf Process **8**, 133 (2009).

 ξE_J

 \times

Qubit 2

Εı

 $M_{B}^{(2)}$

 E_{J}

纠缠

能级结构

强耦合 $J \gg \omega_0$

纠缠

机制:量子干涉 无需边带可分离 冷却率更高,冷却极限减少 γ/|Δ| 无相干成份 弱冷却场 <1 μW

Keyu Xia, Jörg Evers, Phys. Rev. Lett. 103, 227203 (2009)

CA 冷却
 机制: 偶极偶极相互作用
 (集体效应)
 无需边带可分离
 冷却率更高,冷却极限减少 CΓ_aν/γ²
 无相干成份
 弱冷却场 <1 nW
 Keyu Xia, Jörg Evers, arXiv: 0912.1990

息结

纠缠

耦合强度远小于跃迁频率 用 SCRAP 技术稳定制备 BeLL 态和纠缠

Keyu Xia, Mihai Macovei, Joerg Evers & Christoph H Keitel, Phys. Rev. B, **79** 024519 (2009)

耦合强度远大于跃迁频率 自发辐射产生相干, Bell 态和 纠缠(纠缠基态)

Keyu Xia, Mihai Macovei & Joerg Evers, in preparation

